Programmable Logic Controllers:
An Emphasis on Design and Application
Second Edition

Kelvin T. Erickson
Missouri University of Science and Technology
Dedicated to Fran, Esther, David and Amanda
CONTENTS

Preface
vii

Chapter 1
Introduction to PLCs

1.1 Introduction 1
1.2 Automatic Control in Manufacturing 1
1.3 Control System Classifications 2
1.4 History of the PLC 6
1.5 PLC Versus Other Technologies 13
1.6 Basic PLC Architecture 15
1.7 Chapter Summary 20

References 20

Chapter 2
Basic Ladder Logic Programming

2.1 Introduction 24
2.2 Simple Ladder Logic 24
2.3 Basic Ladder Logic Symbols 29
2.4 Ladder Logic Diagram 38
2.5 PLC Processor Scan 44
2.6 Programming with NC Contact 53
2.7 Start/Stop 54
2.8 Transitional Contacts and Coils 60
2.9 Chapter Summary 66

References 66
Problems 67

Chapter 3
Memory Organization and Addressing

3.1 Introduction 80
3.2 IEC 61131-3 Memory Model 80
3.3 Modicon Unity Memory 82
3.4 A-B ControllLogix/CompactLogix Memory 92
3.5 A-B PLC-5 and SLC-500/MicroLogix Memory 99
3.6 Siemens S7 Memory 118
3.7 GE Memory 134
3.8 Chapter Summary 144

References 144
Problems 147
iv Contents

11.8 Chapter Summary 933
References 933
Problems 935

Chapter 12 Structured Text 941
12.1 Introduction 942
12.2 IEC 61131-3 Structured Text 942
12.3 Modicon Structured Text 951
12.4 ControlLogix Structured Text 951
12.5 PLC-5 Structured Text 953
12.6 Siemens S7 Structured Control Language 955
12.7 GE PACSystems Structured Text 957
12.8 Examples 959
12.9 Chapter Summary 971
References 971
Problems 972

Chapter 13 Instruction List 973
13.1 Introduction 973
13.2 IEC 61131-3 Instruction List 973
13.3 Modicon Instruction List 978
13.4 Siemens S7 Statement List Language 978
13.5 GE Instruction List 982
13.6 Examples 983
13.7 Chapter Summary 991
References 991
Problems 992

Chapter 14 Sequential Function Chart 993
14.1 Introduction 994
14.2 IEC 61131-3 Sequential Function Chart 994
14.3 Modicon Sequential Function Chart 1012
14.4 ControlLogix Sequential Function Chart 1021
14.5 PLC-5 Sequential Function Chart 1029
14.6 Siemens S7 Sequential Function Chart 1037
14.7 Examples 1046
14.8 Chapter Summary 1082
References 1082
Problems 1083

Chapter 15 Troubleshooting 1085
15.1 Introduction 1086
15.2 General Troubleshooting Procedures 1088
15.3 Troubleshooting I/O Modules 1091
15.4 Processor Status Indicators 1099
15.5 Program Problems 1103
15.6 Communication Problems 1105
15.7 Designing for Fault Diagnosis 1107
PREFACE

The field of automatic control has been undergoing a transformation over the past twenty years. Twenty years ago, the engineering undergraduate had a course in feedback control theory and those interested in control engineering secured a position in the aerospace or chemical industries. Due to various factors, the number of control engineering positions in the aerospace industry has been declining, but the number of control engineering positions in manufacturing has been dramatically increasing to the point that the majority of control engineering positions is now in manufacturing and involves PLCs.

This book presents the subject of programming industrial controllers, called programmable logic controllers (PLCs) with an emphasis on the design of the programs. Many texts teach one how to program the PLC in its languages, but little, if any, attention is paid to how does one attack the problem: “Given a set of operational specifications, how does one develop the PLC program?” This book develops the design process: the tasks involved, breaking the program into manageable pieces, standard code for the various parts, and handling the sequential parts of the problem. The emphasis is toward those who will be programming PLCs.

Because of its popularity (now and in the future), ladder logic is the language that is used for the majority of the text. The industry trend is toward using the IEC 61131-3 (formerly IEC 1131-3) standard, and so it is the primary language. However, IEC 61131-3 is only a voluntary standard and individual manufacturers have some freedom in the implementation. Therefore, the Allen-Bradley ControlLogix, Modicon, Siemens S7, and GE implementations of the 61131-3 standard are covered. Because of their large installed base, the Allen-Bradley PLC-5/SLC-500 PLC languages are also covered.

Due to the limitations of ladder logic, the IEC 61131-3 standard defines four other languages: function block diagram, structured text, instruction list, and sequential function chart. These four languages will become more popular in the future. Therefore, this text also covers these languages.

Since a typical manufacturing plant may contain discrete, continuous, and batch processes, all of these applications are treated in this text, although the emphasis is on discrete and continuous processes. The emphasis is on a methodology that can be applied to any automation project, regardless of the size.

Throughout, the book contains example problems demonstrating good design practice. In addition, these problems are solved with each PLC covered in the book. The text culminates in two full-length case studies where the application of the design techniques to a large problem is illustrated.

This book takes a practical approach to the design of PLC control systems. Some mathematical theory is used to backup the presentation on PID controllers. However, the theory is not detailed and can be omitted.

Except for Chapters 1 and 13, every chapter begins with a scenario that reflects the experience of the author and his colleagues in the challenging world of factory automation.
These scenarios present a small problem and the solution and are intended to illustrate troubleshooting techniques.

Objectives

The main objectives of this text are to teach:

- PLC programming languages (with emphasis on IEC 61131-3)
- Approach to sequential problems
- Good program design practice
- Simple PID control tuning
- Introduction to sensors and actuators
- Factory communications
- Human-machine interface (HMI) concepts

Content Overview

The book starts by introducing programmable logic controllers (PLCs) and their distinguishing characteristics. Chapters 2 – 5 cover basic ladder logic programming: contact, timer, and counter instructions. As part of the basics, the memory structure of the five particular PLCs and installation topics are treated. Chapter 6 covers ladder logic program design for sequential applications, probably the most significant contribution of the text. Chapters 7 and 8 treat computation, comparison, and advanced ladder logic instructions. Alternate sequential implementations in ladder logic are covered in Chapter 9 and PID controller tuning is covered in Chapter 10. Chapters 11 – 14 cover the other four IEC programming languages: function block diagram, statement list, instruction list, and sequential function chart. PLC troubleshooting is covered in Chapter 15. Sensors and actuators appear in Chapter 16. Chapter 17 introduces factory communication networks. Operator interface, often called human-machine interface (HMI), issues are treated in Chapter 18. Control system security is addressed in Chapter 19 and PLC selection is introduced in Chapter 20. Chapter 21 presents the perspective of an entire automation project, bringing together the various pieces of PLC control design. Chapter 22 outlines two full-length project case studies. One case study is for a process that is primarily discrete and the other case study is for a process that is primarily continuous in nature. Details about number systems and drawing symbols are included as appendices, rather than interrupt the flow of the text material.

The Audience

This book primarily serves the academic market, at the junior or senior undergraduate electrical, mechanical, or industrial engineering or engineering technology level. This text is also suitable for the two-year technical school market. There is nothing in the material that requires a college degree, though the material will be more challenging than the typical PLC textbook for this level of student.

In addition, this text serves the professional market. Economic and regulatory pressures in the manufacturing, chemical, petrochemical, pharmaceutical, and food industries have forced control engineers to design new systems or retrofit existing control systems. Hence, there are many control engineers (primarily chemical and electrical) who need to rapidly
educate themselves in an area of technology in which they are probably only somewhat familiar. This book is valuable to this audience.

Second Edition

The second edition primarily updates the Modicon, Siemens, and GE controllers to the current processors, but there are other changes throughout. The Modicon sections focus on the Modicon Unity processors. For the older Modicon Quantum/Momentum processors, see the first edition of this text. The Allen-Bradley material has been updated to focus on the ControlLogix processor, though the PLC-5/SLC-500/MicroLogix processors are also covered. Coverage of the ControlLogix add-on instruction (AOI) has been added. The Siemens S7-1200 has been added to the Siemens sections and the material on the S5-compatible timers and counters has been removed. The GE PACSystems processor has been added and the material focuses on this processor with references to the earlier processors as appropriate. The PLC history in Chapter 1 has been updated. In Chapter 2, the section about converting relay logic to ladder logic has been removed and replaced with a section on using the transitional contacts and coils. The examples in sections 9.2, 11.7 and 21.4 now utilize user-defined data types and user-defined function blocks. In addition, all of the chapter problems have been replaced with new problems. Lastly, the accompanying CD contains the PLC projects for each example problem and has an additional set of solved problems.

Acknowledgements

The author wishes to acknowledge the beneficial suggestions and comments of many colleagues. Steve Ingracia provided the sample panel specification in Chapter 4. Bill Bichler, Dean Ford, and Esther Erickson reviewed drafts of the first edition of this book and provided many suggestions and corrections to improve the final product. Ken Ball provided more information on the history of the PLC and John Crabtree provided helpful suggestions for the second edition. I especially thank Esther and Fran Erickson for correcting the entire manuscript for grammatical errors, and Fran for doing the initial typesetting.

Portions of this material were taught in industrial short courses and university courses and the students are acknowledged for their help in pointing out errors in the text and where the presentation was unclear.

The following are trademarks or registered trademarks of Schneider Electric: 984, BP85, Concept, FactoryCast, M340, Modbus, Modbus Plus, Modicon, Momentum, PL7, Preventa, Quantum, TSX Micro, Twido, and Unity. The following are trademarks or registered trademarks of Rockwell Automation and its various subsidiaries: Allen-Bradley, CompactLogix, ControlLogix, Data Highway Plus, DH+, FlexLogix, Guard I/O, GuardPLC, MicroLogix, Logix 5000, Pico, PLC-2, PLC-3, PLC-5, PLC-5/11, -5/12, -5/20, -5/20C, -5/20E, -5/26, -5/40E, -5/46, -5/80E, -5/86, Point I/O, Rockwell Automation, Rockwell Software, RSLinx, RSLogix 5, RSLogix 500, RSLogix 5000, RSNetWorx, SLC, SLC-500 and SoftLogix. SIMATIC is a registered trademark of Siemens AG. The following are trademarks of GE Intelligent Platforms: CIMPPLICITY, Logicmaster, PACSystems, Series 90, VersaMax, and VersaPro. Foundation is a trademark of Fieldbus Foundation. ControlNet is a trademark of ControlNet International, Ltd. DeviceNet is a trademark of the Open DeviceNet Vendors Association (ODVA). PROFIBUS and PROFINet are registered trademarks of Profinbus Nutzerorganisation, e.V. P-NET is a
registered trademark of the International P-NET User Organization. Seriplex is a registered trademark of the Square D Company. Ethernet is a trademark of Digital Equipment Corporation, Intel, and Xerox Corporation. Ethernet/IP is a trademark of ControlNet International under license by ODVA. SERCOS interface is a trademark of the Interests Group SERCOS interface e.V. (IGS). VisSim is a registered trademark of Visual Solutions, Inc., Westford, Massachusetts. MATLAB and SIMULINK are registered trademarks of The Mathworks, Inc., Natick, Massachusetts. Microsoft, Windows, and Visual Basic are registered trademarks of Microsoft Corporation. NFPA 70, NFPA 70E, and National Electrical Code are registered trademarks of the National Fire Protection Association.

Disclaimer

Information furnished herein is believed to be accurate and reliable; however no responsibility is assumed for any errors. The user assumes full responsibility for the accuracy and appropriateness of this information.