Programmable Logic Controllers:

An Emphasis on Design and Application

Kelvin T. Erickson

University of Missouri-Rolla

Dedicated to Fran, Esther, and David

Copyright © 2005 Dogwood Valley Press, LLC. All rights reserved.

No portion of this book may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, including electronic, mechanical, photocopying, scanning, recording or otherwise, except as permitted under the 1976 United States Copyright Act, without explicit, prior written permission of the publisher except for brief passages excerpted for review and critical purposes.

This book was set in Times New Roman and printed on acid-free paper.

Printed in the United States of America ISBN 0-9766259-0-3

Dogwood Valley Press, LLC 1604 Lincoln Lane Rolla, MO 65401 1-573-426-3507

Http://www.DogwoodValleyPress.com

10 9 8 7 6 5 4 3 2 1

CONTENTS

Chapter 1	Introduction to PLCs		
	1.1	Introduction	1
	1.2	Automatic Control in Manufacturing	1
	1.3	Control System Classifications	2
	1.4	History of the PLC	6
	1.5	PLC Versus Other Technologies	13
	1.6	Basic PLC Architecture	15
	1.7	Chapter Summary	20
	Refer	rences	20
Chapter 2	Basic Ladder Logic Programming		23
	2.1	Introduction	24
	2.2	Simple Ladder Logic	24
	2.3	Basic Ladder Logic Synbols	29
	2.4	Ladder Logic Diagram	37
	2.5	PLC Processor Scan	43
	2.6	Programming with NC Contact	53
	2.7	Start/Stop	54
	2.8	Converting Relay Logic to Ladder Logic	60
	2.9	Chapter Summary	64
	References		65
	Problems		67
Chapter 3	Mem	ory Organization and Addressing	77
	3.1	Introduction	78
	3.2	IEC 61131-3 Memory Model	78
	3.3	Modicon Quantum/Momentum Memory	80
	3.4	A-B ControlLogix Memory	90
	3.5	A-B PLC-5 and SLC-500 Memory	97
	3.6	Siemens S7 Memory	115
	3.7	GE Fanuc Memory	131
	3.8	Chapter Summary	140
	References		140
	Problems		141

vii

ii Contents

Chapter 4	Input/C	Output Modules and Installation	147
	4.1	Introduction	148
	4.2	Discrete Modules	150
	4.3	Analog Modules	164
	4.4	Specialized Modules	171
	4.5	Installation Wiring	176
	4.6	Chapter Summary	192
	Referer	nces	192
	Problem	ns	195
Chapter 5	Timers and Counters		197
	5.1	Introduction	199
	5.2	IEC Timers and Counters	199
	5.3	Modicon Timers and Counters	200
	5.4	A-B ControlLogix Timers and Counters	209
	5.5	A-B PLC-5/SLC-500 Timers and Counters	219
	5.6	Siemens S7 Timers and Counters	225
	5.7	GE Fanuc Timers and Counters	244
	5.8	General Timers and Counter Situations	250
	5.9	Examples	252
	5.10	Chapter Summary	274
	Referer	nces	274
	Problem	ns	276
Chapter 6	Sequen	tial Applications	295
	6.1	Introduction	296
	6.2	Function Chart	297
	6.3	Implementing Function Chart in Ladder Logic	303
	6.4	Complicated Reset Operation	326
	6.5	Parallel Operations	347
	6.6	Key Questions in the Sequential Design Process	357
	6.7	Manual and Single-Step Sequential Operation	357
	6.8	Transitions When PLC Has No Reset	360
	6.9	Chapter Summary	360
	References		365
	Problem	ns	366
Chapter 7	Compa	rison and Computation	429
	7.1	Introduction	430
	7.2	Conversion of Physical Quantity	430
	7.3	IEC Comparison and Computation	434
	7.4	Modicon Comparison and Computation	435
	7.5	A-B ControlLogix Comparison and Computation	445
	7.6	A-B PLC-5/SLC-500 Comparison and Computation	452
	7.7	Siemens S7 Comparison and Computation	463
	7.8	GE Fanuc Comparison and Computation	474
	7.9	Application Caveats	482
	7.10	Examples	482

	7.11	Chapter Summary	512
	References		513
	Problems		514
Chapter 8	Other	567	
	8.1	Introduction	567
	8.2	Other IEC Function Blocks	569
	8.3	Other Modicon Function Blocks	569
	8.4	Other ControlLogix Function Blocks	580
	8.5	Other PLC-5/SLC-500 Function Blocks	599
	8.6	Other Siemens S7 Function Blocks	618
	8.7	Other GE Fanuc Function Blocks	633
	8.8	Examples	647
	8.9	Chapter Summary	669
	Refere	ences	669
	Problems		672
Chapter 9	Other Function Chart Implementations		677
	9.1	Introduction	679
	9.2	Counter-Based Sequence	679
	9.3	Shift Register-Based Sequence	708
	9.4	Sequencer Function Blocks	730
	9.5	Unstructured Sequence	754
	9.6	Chapter Summary	759
	Refere	ences	759
	Problems		761
Chapter 10	PID Control		765
	10.1	Introduction	768
	10.2	Feedback Control Performance	772
	10.3	PID Controller	776
	10.4	PID Controller Tuning	785
	10.5	PID Control Enhancements	805
	10.6	Operational Aspects	817
	10.7	PLC PID Function Blocks	818
	10.8	Examples	839
	10.9	Chapter Summary	853
	References		854
	Problems		856
Chapter 11	Function Block Diagram		869
-	11.1	Introduction	870
	11.2	IEC 61131-3 Function Block Diagram	870
	11.2	Modicon Function Block Diagram	874
	11.5	ControlLogix Function Block Diagram	877
	11.5	Siemens S7 Function Block Diagram	803
	11.5	Examples	896
	11.0	Chapter Summary	910
	÷ ÷ • /	r · · · · · · · · · · · · · · · · ·	210

iv Contents

	References	911
	Problems	913
Chapter 12	Structured Text	919
	12.1 Introduction	920
	12.2 IEC 61131-3 Structured Text	921
	12.3 Modicon Structured Text	929
	12.4 ControlLogix Structured Text	930
	12.5 PLC-5 Structured Text	932
	12.6 Siemens S7 Structured Control Language	934
	12.7 Examples	936
	12.8 Chapter Summary	948
	References	948
	Problems	950
Chapter 13	Instruction List	953
	13.1 Introduction	953
	13.2 IEC 61131-3 Instruction List	953
	13.3 Modicon Instruction List	958
	13.4 Siemens S7 Instruction List	958
	13.5 GE Fanuc Instruction List	961
	13.6 Examples	962
	13.7 Chapter Summary	971
	References	971
	Problems	972
Chapter 14	Sequential Function Chart	975
	14.1 Introduction	976
	14.2 IEC 61131-3 Sequential Function Chart	976
	14.3 Modicon Sequential Function Chart	994
	14.4 ControlLogix Sequential Function Chart	1003
	14.5 PLC-5 Sequential Function Chart	1011
	14.6 Siemens S7 Sequential Function Chart	1019
	14.7 Examples	1028
	14.8 Chapter Summary	1064
	References	1064
	Problems	1065
Chapter 15	Troubleshooting	1067
	15.1 Introduction	1069
	15.2 General Troubleshooting Procedures	1070
	15.3 Troubleshooting I/O Modules	1073
	15.4 Processor Status Indicators	1083
	15.5 Program Problems	1086
	15.6 Communication Problems	1089
	15.7 Designing for Fault Diagnosis	1091
	15.8 Chapter Summary	1091
	References	1091

Chapter 16	Sensors	s and Actuators	1093
	16.1	Introduction	1095
	16.2	Discrete Sensors	1095
	16.3	Analog Sensors	1109
	16.4	Discrete Actuators	1148
	16.5	Analog Actuators	1155
	16.6	Chapter Summary	1166
	Referen	nces	1166
	Probler	ms	1168
	Append	dix - Thermocouple Conversion Polynomial Coefficients	1174
Chapter 17	Comm	unication Networks	1181
	17.1	Introduction	1183
	17.2	Network Protocols	1184
	17.3	Ethernet	1191
	17.4	Foundation Fieldbus	1192
	17.5	CIP-Related Protocols	1196
	17.6	PROFIBUS (DP, PA, PROFInet)	1203
	17.7	P-NET	1208
	17.8	WorldFIP	1211
	17.9	INTERBUS	1215
	17.10	SwiftNet	1217
	17.11	AS-i	1219
	17.12	Seriplex	1220
	17.13	Modicon Protocols	1222
	17.14	Allen-Bradley Proprietary Networks	1225
	17.15	GE Fanuc Proprietary Networks	1226
	17.16	Ladder Logic Communication Blocks	1227
	17.17	Chapter Summary	1249
	Referen	nces	1249
Chapter 18	Human-Machine Interface		1253
	18.1	Introduction	1255
	18.2	HMI Types	1255
	18.3	HMI Panel Design	1259
	18.4	Graphical HMI Design	1262
	18.5	Graphical HMI Development	1268
	18.6	Chapter Summary	1277
	Referen	nces	1277
Chapter 19	Contro	l System Security	1279
	19.1	Introduction	1279
	19.2	Factory Automation Network Security	1280
	19.3	PLC Processor Security	1284
	19.4	Chapter Summary	1297
	Referen	nces	1297

vi Contents

Chapter 20	Selectin	g a PLC	1299
	20.1	Introduction	1299
	20.2	Selection Factors	1300
	20.3	PLC Families	1303
	20.4	Chapter Summary	1308
	Referen	ces	1309
Chapter 21	Control Projects		1311
	21.1	Introduction	1311
	21.2	Typical Control Design Project	1312
	21.3	Example Control Requirements Definition	1320
	21.4	Standardization	1327
	21.5	Testing	1387
	21.6	Chapter Summary	1400
	Referen	ces	1401
	Problem	15	1402
Chapter 22	Example	e Projects	1405
	22.1	Introduction	1405
	22.2	Coal Handling System	1405
	22.3	Multi-Unit Chemical Process	1411
	22.4	Chapter Summary	1416
	Referen	ces	1416
Appendix A	Number	Systems and Conversions	1417
Appendix B	Electrica	al Diagram Symbols	1423
Appendix C	Piping a	and Instrumentation Diagram (P&ID) Symbols	1426
Glossary			1429
Index			1445

PREFACE

The field of automatic control has been undergoing a transformation over the past twenty years. Twenty years ago, the engineering undergraduate had a course in feedback control theory and those interested in control engineering secured a position in the aerospace or chemical industries. Due to various factors, the number of control engineering positions in the aerospace industry has been declining, but the number of control engineering positions in manufacturing has been dramatically increasing to the point that the majority of control engineering positions is now in manufacturing and involves PLCs.

This book presents the subject of programming industrial controllers, called programmable logic controllers (PLCs) with an emphasis on the design of the programs. Many texts teach one how to program the PLC in its languages, but little, if any, attention is paid to how does one attack the problem: "Given a set of operational specifications, how does one develop the PLC program?" This book develops the design process: the tasks involved, breaking the program into manageable pieces, standard code for the various parts, and handling the sequential parts of the problem. The emphasis is toward those who will be programming PLCs.

Because of its popularity (now and in the future), ladder logic is the language that is used for the majority of the text. The industry trend is toward using the IEC 61131-3 (formerly IEC 1131-3) standard, and so it is the primary language. However, IEC 61131-3 is only a voluntary standard and individual manufacturers have some freedom in the implementation. Therefore, the Allen-Bradley ControlLogix, Modicon, and Siemens S7 implementations of the 61131-3 standard are covered. Because of their large installed base, Allen-Bradley PLC-5/SLC-500 and GE Fanue PLC languages are also covered.

Due to the limitations of ladder logic, the IEC 61131-3 standard defines four other languages: function block diagram, structured text, instruction list, and sequential function chart. These four languages will become more popular in the future. Therefore, this text also covers these languages.

Since a typical manufacturing plant may contain discrete, continuous, and batch processes, all of these applications are treated in this text, although the emphasis is on discrete and continuous processes. The emphasis is on a methodology that can be applied to any automation project, regardless of the size.

Throughout, the book contains example problems demonstrating good design practice. In addition, these problems are solved with each PLC covered in the book. The text culminates in two full-length case studies where the application of the design techniques to a large problem is illustrated.

This book takes a practical approach to the design of PLC control systems. Some mathematical theory is used to backup the presentation on PID controllers. However, the theory is not detailed and can be omitted.

Except for Chapters 1 and 13, every chapter begins with a scenario that reflects the experience of the author and his colleagues in the challenging world of factory automation.

viii Preface

These scenarios present a small problem and the solution and are intended to illustrate troubleshooting techniques.

Objectives

The main objectives of this text are to teach:

- PLC programming languages (with emphasis on IEC 61131-3)
- Approach to sequential problems
- Good program design practice
- Simple PID control tuning
- · Introduction to sensors and actuators
- Factory communications
- Human-machine interface (HMI) concepts

Content Overview

The book starts by introducing programmable logic controllers (PLCs) and their distinguishing characteristics. Chapters 2 - 5 cover basic ladder logic programming: contact, timer, and counter instructions. As part of the basics, the memory structure of the five particular PLCs and installation topics are treated. Chapter 6 covers ladder logic program design for sequential applications, probably the most significant contribution of the text. Chapters 7 and 8 treat computation, comparison, and advanced ladder logic instructions. Alternate sequential implementations in ladder logic are covered in Chapter 9 and PID controller tuning is covered in Chapter 10. Chapters 11 - 14 cover the other four IEC programming languages: function block diagram, statement list, instruction list, and sequential function chart. PLC troubleshooting is covered in Chapter 15. Sensors and actuators appear in Chapter 16. Chapter 17 introduces factory communication networks. Operator interface, often called human-machine interface (HMI), issues are treated in Chapter 18. Control system security is addressed in Chapter 19 and PLC selection is introduced in Chapter 20. Chapter 21 presents the perspective of an entire automation project, bringing together the various pieces of PLC control design. Chapter 22 outlines two full-length project case studies. One case study is for a process that is primarily discrete and the other case study is for a process that is primarily continuous in nature. Details about number systems and drawing symbols are included as appendices, rather than interrupt the flow of the text material.

The Audience

This book primarily serves the academic market, at the junior or senior undergraduate electrical, mechanical, or industrial engineering or engineering technology level. This text is also suitable for the two-year technical school market. There is nothing in the material that requires a college degree, though the material will be more challenging than the typical PLC textbook for this level of student.

In addition, this text serves the professional market. Economic and regulatory pressures in the manufacturing, chemical, petrochemical, pharmaceutical, and food industries have forced control engineers to design new systems or retrofit existing control systems. Hence, there are many control engineers (primarily chemical and electrical) who need to rapidly educate themselves in an area of technology in which they are probably only somewhat familiar. This book is valuable to this audience.

Acknowledgements

The author wishes to acknowledge the beneficial suggestions and comments of many colleagues. Bill Bichler, Dean Ford, and Esther Erickson reviewed drafts of this book and provided many suggestions and corrections to improve the final product. I especially thank Esther and Fran Erickson for correcting the entire manuscript for grammatical errors, and Fran for doing the initial typesetting.

Portions of this material were taught in industrial short courses and university courses and the students are acknowledged for their help in pointing out errors in the text and where the presentation was unclear.

The following are registered trademarks of Schneider Electric: Modicon, Quantum, Momentum, Concept, Unity, and Modbus. The following are trademarks of Schneider Electric Modbus Plus, 984, BP85, and BM85. The following are registered trademarks of Rockwell Automation and its various subsidiary entities: Allen-Bradley, ControlLogix, PLC-2, PLC-3, PLC-5, Rockwell Automation, Rockwell Software, and RSLinx. The following are trademarks of Rockwell Automation and its various subsidiary entities: CompactLogix, Data Highway Plus, DH+, FlexLogix, GuardPLC, MicroLogix, Logix 5000, Pico, PLC-5/11, PLC-5/20, PLC-5/20E, PLC-5/26, PLC-5/30, PLC-5/40, PLC-5/40E, PLC-5/40L, PLC-5/46, PLC-5/60, PLC-5/60L, PLC-5/80, PLC-5/80E, PLC-5/86, PLC-5/250, RSLogix 5, RSLogix 500, RSLogix 5000, RSNetWorx, SLC, SLC-500 and SoftLogix. SIMATIC is a registered trademark of Siemens AG. The following are trademarks of GE Fanuc Automation North America, Inc.: CIMPLICITY, Logicmaster, PACSystems, Series 90, Series Five, Series One, Series Six, Series Three, VersaMax, and VersaPro. Foundation is a trademark of Fieldbus Foundation. ControlNet is a trademark of ControlNet International, Ltd. DeviceNet is a trademark of the Open DeviceNet Vendors Association. PROFIBUS and PROFInet are registered trademarks of Profibus Nutzerorganisation, e.V. P-NET is a registered trademark of the International P-NET User Organization. Seriplex is a registered trademark of the Square D Company. Ethernet is a trademark of Digital Equipment Corporation, Intel, and Xerox Corporation. SERCOS interface is a trademark of the Interests Group SERCOS interface e.V. (IGS). VisSim is a registered trademark of Visual Solutions, Inc., Westford, Massachusetts. MATLAB and SIMULINK are registered trademarks of The Mathworks, Inc., Natick, Massachusetts. Microsoft, Windows, and Visual Basic are registered trademarks of Microsoft Corporation.

Disclaimer

Information furnished herein is believed to be accurate and reliable; however no responsibility is assumed for any errors. The user assumes full responsibility for the accuracy and appropriateness of this information.