Allen-Bradley PLCs:

An Emphasis on Design and Application

Kelvin T. Erickson

Missouri University of Science and Technology

Copyright © 2013 Dogwood Valley Press, LLC. All rights reserved.

No portion of this book may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, including electronic, mechanical, photocopying, scanning, recording or otherwise, except as permitted under the 1976 United States Copyright Act, without explicit, prior written permission of the publisher except for brief passages excerpted for review and critical purposes.

This book was set in Times New Roman and printed on acid-free paper.

Printed in the United States of America ISBN 978-0-9766259-3-3

Dogwood Valley Press, LLC 1604 Lincoln Lane Rolla, MO 65401 1-573-426-3507

http://www.DogwoodValleyPress.com

10 9 8 7 6 5 4 3 2 1

Dedicated to Fran, Esther, David and Amanda

CONTENTS

Preface		v
Chapter 1	Introduction to PLCs	1
	1.1 Introduction	1
	1.2 Automatic Control in Manufacturing	1
	1.3 Control System Classifications	2
	1.4 History of the PLC	6
	1.5 PLC Versus Other Technologies	10
	1.6 Basic PLC Architecture	12
	1.7 Chapter Summary	15
	References	15
Chapter 2	Basic Ladder Logic Programming	17
	2.1 Introduction	18
	2.2 Simple Ladder Logic	18
	2.3 Basic Ladder Logic Synbols	23
	2.4 Ladder Logic Diagram	26
	2.5 PLC Processor Scan	32
	2.6 Programming with NC Contact	41
	2.7 Start/Stop	43
	2.8 Transitional Contacts and Coils	48
	2.9 Chapter Summary	53
	References	53
	Problems	54
Chapter 3	Memory Organization and Addressing	65
	3.1 Introduction	66
	3.2 ControlLogix/CompactLogix Memory	66
	3.3 MicroLogix and SLC-500 Memory	74
	3.4 Chapter Summary	85
	References	85
	Problems	87
Chapter 4	Input/Output Modules and Installation	93
	4.1 Introduction	94
	4.2 Discrete Modules	96
	4.3 Analog Modules	110
	4.4 Specialized Modules	117
	4.5 Installation Wiring	122

	4.6 Chapter Summary References Problems	138 138 141	
Chapter 5	Timers and Counters		
	5.1 Introduction	145	
	5.2 ControlLogix Timers and Counters	146	
	5.3 MicroLogix/SLC-500 Timers and Counters	155	
	5.4 General Timer and Counter Situations	161	
	5.5 Examples	163	
	5.6 Chapter Summary	177	
	References	177	
	Problems	179	
Chapter 6	Sequential Applications	207	
	6.1 Introduction	208	
	6.2 Function Chart	209	
	6.3 Implementing Function Chart in Ladder Logic	215	
	6.4 Complicated Reset Operation	233	
	6.5 Parallel Branching	246	
	6.6 Key Questions in the Sequential Design Process	256	
	6.7 Manual and Single-Step Sequential Operation	256	
	6.8 Unstructured Sequence	259	
	6.9 Chapter Summary	259	
	References	263	
	Problems	264	
Chapter 7	Comparison and Computation	321	
	7.1 Introduction	322	
	7.2 Conversion of Physical Quantity	322	
	7.3 ControlLogix Comparison and Computation	327	
	7.4 MicroLogix/SLC Comparison and Computation	335	
	7.5 Application Caveats	344	
	7.6 Examples	345	
	7.7 Chapter Summary	359	
	References	359	
	Problems	363	
Chapter 8	Other Ladder Logic Blocks	413	
	8.1 Introduction	413	
	8.2 Other ControlLogix Function Blocks	415	
	8.3 Other MicroLogix/SLC-500 Function Blocks	433	
	8.4 Examples	448	
	8.5 Chapter Summary	459	
	References	460	
	Problems	461	

Chapter 9	Troubleshooting		467
	9.1	Introduction	468
	9.2	General Troubleshooting Procedures	470
	9.3	Troubleshooting I/O Modules	473
	9.4	Processor Status Indicators	479
	9.5	Program Problems	482
	9.6	Communication Problems	485
	9.7	Designing for Fault Diagnosis	487
	9.8	Chapter Summary	488
	Refere	nces	488
Chapter 10	PID Control		
	10.1	Introduction	491 494
	10.1	Feedback Control Performance	498
	10.2	PID Controller	502
	10.5	PID Controller Tuning	511
	10.4	Operational Aspects	531
	10.5	PLC PID Function Blocks	532
	10.0	Chapter Summary	539
	Refere		539
	Problem		541
Chanton 11	Sensor	s and Actuators	547
Chapter 11			
	11.1	Introduction	549
	11.2		549
	11.3	6	563
	11.4		602
	11.5 11.6	Analog Actuators	609
	Refere	Chapter Summary	620 620
		dix - Thermocouple Conversion Polynomial Coefficients	620
	Proble	· ·	628
Chapter 12	Comm	unication Networks	635
	12.1	Introduction	636
	12.1	Network Protocols	638
	12.2	Ethernet	645
	12.4	CIP-Related Protocols	646
	12.5	PROFIBUS (DP, PA)	652
	12.6	AS-i	655
	12.0	Allen-Bradley Proprietary Networks	657
	12.8	A-B Ladder Logic Communication Blocks	658
	12.0	Heartbeat Logic	666
	12.10	Chapter Summary	668
	Refere	1 0	669

Chapter 13	Human-Machine Interface		
	13.1 Introduction	673	
	13.2 HMI Types	673	
	13.3 HMI Panel Design	677	
	13.4 Graphical HMI Design	680	
	13.5 Graphical HMI Development	686	
	13.6 Chapter Summary	695	
	References	695	
Chapter 14	Selecting a PLC	697	
	14.1 Introduction	698	
	14.2 Selection Factors	699	
	14.3 PLC Families	701	
	14.4 Chapter Summary	708	
	References	708	
Chapter 15	Control Projects	711	
	15.1 Introduction	711	
	15.2 Typical Control Design Project	712	
	15.3 Testing	720	
	15.4 Coal Handling System Example	731	
	15.6 Chapter Summary	737	
	References	737	
	Problems	738	
Appendix A	Number Systems and Conversions	741	
Appendix B	Electrical Diagram Symbols	747	
Appendix C	Piping and Instrumentation Diagram (P&ID) Symbols	750	
Glossary		753	
Index		769	

PREFACE

Programmable logic controllers (PLCs) are the workhorses of modern manufacturing automation. Automatic control allows the production of a consistent product at a reasonable cost and the PLC is the most prevalent control technology in manufacturing.

This book presents the subject of programming Allen-Bradley PLCs with an emphasis on the design of the programs. Many texts teach one how to program the PLC in its languages, but little, if any, attention is paid to how does one attack the problem: "Given a set of operational specifications, how does one develop the PLC program?" This book develops the design process: the tasks involved, breaking the program into manageable pieces, standard code for the various parts, and handling the sequential parts of the problem. The emphasis is toward those who will be programming PLCs.

The text emphasizes the following Allen-Bradley controllers: ControlLogix, CompactLogix, MicroLogix, and SLC-500. Furthermore, because of its popularity (now and in the future), ladder logic is the language that is used for the text. The industry trend is toward using the IEC 61131-3 (formerly IEC 1131-3) standard, which also defines four other languages: function block diagram, structured text, instruction list, and sequential function chart. One interested in the other languages and in programming PLCs from Modicon, Siemens, and GE, should see Erickson (2011).

Since a typical manufacturing plant may contain discrete, continuous, and batch processes, all of these applications are treated in this text, although the emphasis is on discrete and continuous processes. The emphasis is on a methodology that can be applied to any automation project, regardless of the size.

Throughout, the book contains example problems demonstrating good design practice. In addition, these problems are solved with each PLC covered in the book.

This book takes a practical approach to the design of PLC control systems. Some mathematical theory is used to backup the presentation on PID controllers. However, the theory is not detailed and can be omitted.

Except for Chapter 1, every chapter begins with a scenario that reflects the experience of the author and his colleagues in the challenging world of factory automation. These scenarios present a small problem and the solution and are intended to illustrate troubleshooting techniques.

Objectives

The main objectives of this text are to teach:

- PLC ladder logic programming for Allen-Bradley PLCs
- Approach to sequential problems
- Good program design practice
- Simple PID control tuning

- · Introduction to sensors and actuators
- Human-machine interface (HMI) concepts

Content Overview

The book starts by introducing programmable logic controllers (PLCs) and their distinguishing characteristics. Chapters 2 - 5 cover basic ladder logic programming: contact, timer, and counter instructions. As part of the basics, the memory structure of the three particular PLCs and installation topics are treated. Chapter 6 covers ladder logic program design for sequential applications, probably the most significant contribution of the text. Chapters 7 and 8 treat computation, comparison, and advanced ladder logic instructions. PLC troubleshooting is covered in Chapter 9 and PID controller tuning is covered in Chapter 10. Sensors and actuators appear in Chapter 11. Chapter 12 introduces factory communication networks. Operator interface, often called human-machine interface (HMI), issues are treated in Chapter 13. PLC selection is introduced in Chapter 14 and it also covers the PLCs from Siemens, Modicon, and GE. Chapter 15 presents the perspective of an entire automation project, bringing together the various pieces of PLC control design and then outlines a full-length project case study. Details about number systems and drawing symbols are included as appendices, rather than interrupt the flow of the text material.

Throughout the text, any reference to ControlLogix also applies to the CompactLogix, which is a smaller version of the ControlLogix. Also, much of the MicroLogix and SLC-500 ladder logic programming also apply to the PLC-5 processors.

The Audience

This book primarily serves the academic market, at the two-year technical school level, though the material on PID controllers will be more challenging than the typical PLC textbook for this level of student. This text is also suitable for junior or senior undergraduate electrical, mechanical, or industrial engineering or engineering technology level.

In addition, this text serves the professional market. Economic and regulatory pressures in the manufacturing, chemical, petrochemical, pharmaceutical, and food industries have forced control engineers to design new systems or retrofit existing control systems. Hence, there are many control engineers (primarily chemical and electrical) who need to rapidly educate themselves in an area of technology in which they are probably only somewhat familiar. This book is valuable to this audience.

Acknowledgements

The author wishes to acknowledge the beneficial suggestions and comments of many colleagues. Steve Ingracia provided the sample panel specification in Chapter 4. Ken Ball provided more information on the history of the PLC. I especially thank Esther and Fran Erickson for correcting the manuscript for grammatical errors and Fran for doing the initial typesetting.

Portions of this material were taught in industrial short courses and university courses and the students are acknowledged for their help in pointing out errors in the text and where the presentation was unclear.

The following are trademarks or registered trademarks of Schneider Electric: 984, BP85, Concept, FactoryCast, M340, Modbus, Modbus Plus, Modicon, Momentum, PL7, Preventa, Quantum, TSX Micro, Twido, and Unity. The following are trademarks or registered trademarks of Rockwell Automation and its various subsidiaries: Allen-Bradley, CompactLogix, ControlLogix, Data Highway Plus, DH+, FlexLogix, Guard I/O, GuardPLC, Micro800, Micro810, Micro830, MicroLogix, Logix 5000, Pico, PLC-2, PLC-3, PLC-5, PLC-5/11, -5/12, -5/20, -5/20C, -5/20E, -5/26, -5/40E, -5/46, -5/80E, -5/86, Point I/O, Rockwell Automation, Rockwell Software, RSLinx, RSLogix 5, RSLogix 500, RSLogix 5000, RSNetWorx, SLC, SLC-500 and SoftLogix. SIMATIC is a registered trademark of Siemens AG. The following are trademarks of GE Intelligent Plarforms: CIMPLICITY, Logicmaster, PACSystems, Series 90, VersaMax, and VersaPro. ControlNet is a trademark of ControlNet International, Ltd. DeviceNet is a trademark of the Open DeviceNet Vendors Association (ODVA). PROFIBUS and PROFInet are registered trademarks of Profibus Nutzerorganisation, e.V. P-NET is a registered trademark of the International P-NET User Organization. Ethernet is a trademark of Digital Equipment Corporation, Intel, and Xerox Corporation. Ethernet/IP is a trademark of ControlNet International under license by ODVA. SERCOS interface is a trademark of the Interests Group SERCOS interface e.V. (IGS). VisSim is a registered trademark of Visual Solutions, Inc., Westford, Massachusetts, MATLAB and SIMULINK are registered trademarks of The Mathworks, Inc., Natick, Massachusetts. Microsoft, Windows, and Visual Basic are registered trademarks of Microsoft Corporation. NFPA 70, NFPA 70E, and National Electrical Code are registered trademarks of the National Fire Protection Association.

Disclaimer

Information furnished herein is believed to be accurate and reliable; however no responsibility is assumed for any errors. The user assumes full responsibility for the accuracy and appropriateness of this information.

Reference

Erickson, Kelvin T., 2011. Programmable Logic Controllers: An Emphasis on Design and Application, 2nd Edition, Dogwood Valley Press, Rolla, MO.